Augmin-dependent microtubule nucleation at microtubule walls in the spindle
نویسندگان
چکیده
The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling. In metaphase spindles of human cells, the minus ends of MTs were located both around the centriole and in the body of the spindle. When augmin was knocked down, the latter population of MTs was significantly reduced. In control cells, we identified connections between the wall of one MT and the minus end of a neighboring MT. Interestingly, the connected MTs were nearly parallel, unlike other examples of end-wall connections between cytoskeletal polymers. Our observations support the concept of augmin-dependent MT nucleation at the walls of existing spindle MTs. Furthermore, they suggest a mechanism for maintaining polarized MT organization, even when noncentrosomal MT initiation is widespread.
منابع مشابه
Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1.
Bipolar spindle formation is pivotal for accurate segregation of mitotic chromosomes during cell division. A growing body of evidence suggests that, in addition to centrosome- and chromatin-based microtubule (MT) nucleation, MT-based MT nucleation plays an important role for proper bipolar spindle formation in various eukaryotic organisms. Although a recently discovered Augmin complex appears t...
متن کاملBranching Microtubule Nucleation in Xenopus Egg Extracts Mediated by Augmin and TPX2
The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence has suggested that microtubules also might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation f...
متن کاملIntra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development.
Errors during cell division in oocytes and early embryos are linked to birth defects in mammals. Bipolar spindle assembly in early mouse embryos is unique in that three or more acentriolar microtubule-organizing centers (MTOCs) are initially formed and are then clustered into two spindle poles. Using a knockout mouse and live imaging of spindles in embryos, we demonstrate that MTOC clustering d...
متن کاملChromatin-mediated microtubule nucleation in Drosophila syncytial embryos
Upon entry into mitosis, many microtubules are nucleated that coordinately integrate into a stable, yet dynamic, mitotic spindle apparatus. In a recent publication, we examined microtubule-generating pathways within a single model system, the Drosophila syncytial embryo. We found that, following depolymerisation of metaphase spindle microtubules by cold treatment, spindles regenerate predominan...
متن کاملAugmin Triggers Microtubule-Dependent Microtubule Nucleation in Interphase Plant Cells
Microtubule (MT)-dependent MT nucleation by γ-tubulin is required for interphase plant cells to establish a highly dynamic cortical MT network underneath the plasma membrane, which influences the deposition of cell wall materials and consequently governs patterns of directional cell expansion. Newly formed MTs either assume 40° angles or are parallel to the extant ones. To date, it has been eni...
متن کامل